Skip to main content

Vector spaces

Definition

Definition : Vector space

Let EE be a non empty set, with two operations : an internal operation (or law) called addition and noted ++:

E×EE(u,v)u+v\begin{array}{ccc} E \times E & \longrightarrow & E \\ (u, v) & \longrightarrow & u + v \end{array}

and an external operation (or law) called multiplication and noted \cdot :

K×EE(λ,u)λu\begin{array}{ccc} \mathbb{K} \times E & \longrightarrow & E \\ (\lambda, u) & \longrightarrow & \lambda \cdot u \end{array}

We say that (E,+,)(E, +, \cdot) is a vector space on K\mathbb{K} or a K\mathbb{K}-vector space if the following properties are satisfied :

  • The addition on EE is :
    1. commutative : u+v=v+uu + v = v + u for all (u,v)K2(u, v) \in \mathbb{K}^2
    2. associative : (u+v)+w=u+(v+w)(u + v) + w = u + (v + w) for all (u,v,w)K3(u, v, w) \in \mathbb{K}^3
    3. own a "zero" called null vector : there exists 0\vec{0} such that u+0=u\vec{u} + \vec{0} = \vec{u}, for all uE\vec{u} \in E
    4. Every element has an opposite : for all uEu \in E, there is an element denoted u-u such that u+(u)=0u + (-u) = 0
  • External multiplication verifies :
    1. 1u=u1 \cdot u = u pour tout uEu \in E
    2. λ(μu)=(λμ)u\lambda \cdot (\mu \cdot u) = (\lambda\mu) \cdot u for all (λ,μ)K2,uE(\lambda, \mu) \in \mathbb{K}^2, u \in E
  • Multiplication is distributive over addition :
    1. λ(u+v)=λu+λv\lambda \cdot (u + v) = \lambda \cdot u + \lambda \cdot v for all λK\lambda \in \mathbb{K}, for all (u,v)E2(u, v) \in E^2
    2. (λ+μ)u=λu+μu(\lambda + \mu) \cdot u = \lambda \cdot u + \mu \cdot u for all (λ,μ)K2(\lambda, \mu) \in \mathbb{K}^2, for all uEu \in E

Results

Proposition : Vector space axioms

If (E,+,)(E, +, \cdot) is a K\mathbb{K}-vector space, then :

  1. Its null vector is unique
  2. Every vector of EE has a unique opposite
  3. λ0=0\lambda \cdot 0 = 0 for all λK\lambda \in \mathbb{K}
  4. 0u=00 \cdot u = 0 for all uEu \in E
  5. If λu=0\lambda \cdot u = 0 then λ=0\lambda = 0 or u=0u = 0
  6. u=(1)u-u = (-1) \cdot u for all uEu \in E
Proof
  1. If 0E0_E' is an other null vector, then with property (3) of vectors spaces, 0E0_E + 0E=0E0_E' = 0_E' but also 0E0_E + 0E=0E0_E' = 0_E hence 0E=0E0_E = 0_E'.
  2. If uu own two opposites denoted vv and ww, then v=v+0=v+(u+w)=(v+u)+w=0E+w=wv = v + 0 = v + (u + w) = (v + u) + w = 0_E + w = w (by successively applying (3) (4) (2) (4) (3))
  3. We have λ0E=λ(0E+0E)=λ0E+λ0E\lambda \cdot 0_E = \lambda \cdot (0_E + 0_E) = \lambda \cdot 0_E + \lambda \cdot 0_E by successively applying the vector spaces properties (3) and (7), so, adding the opposite of λ0E\lambda \cdot 0_E, we found 0E=λ0E0_E = \lambda \cdot 0_E.
  4. We write 0Eu=(0E+0E)u=0Eu+0Eu0_E \cdot u = (0_E + 0_E) \cdot u = 0_E \cdot u + 0_E \cdot u by applying (8) and we also conclude that 0Eu=0E0_E \cdot u = 0_E
  5. We suppose that λu=0E\lambda \cdot u = 0_E with λ0E\lambda \neq 0_E, and then we show u=0Eu = 0_E. We have u=1u=(λ1λ)u=λ1(λu)=λ10E=0Eu = 1 \cdot u = (\lambda^{-1}\lambda) \cdot u = \lambda^{-1} \cdot (\lambda \cdot u) = \lambda^{-1} \cdot 0_E = 0_E
  6. We remark that u+(1)u=1u+(1)u=(1+(1))u=0Eu=0u + (-1) \cdot u = 1 \cdot u + (-1) \cdot u = (1 + (-1)) \cdot u = 0_E \cdot u = 0 and we conclude thanks to the opposite unicity of uu that we have demonstrated in (2).