Skip to main content

Characteristic function

info

This section is waiting for contributions.

Definition

Definition

Let XX be a real-valued random variable, the characteristic function of XX is the function ϕX:RC\phi_X : \mathbb{R} \rightarrow \mathbb{C}, given by :

ϕX(t)=E[eitX],tR\phi_X(t) = \mathbb{E}[e^{itX}], \quad \forall t \in \mathbb R

Definition : Characteristic function of random vector

Let X=(X1,,Xn)X = (X_1, \dots, X_n) a real-valued random vector in Rn\mathbb R^n. We call characteristic function of XX the function ϕ:RnC\phi : \mathbb R^n \rightarrow \mathbb C defined by

ϕ(t):=E[eit,W]=E[eik=1ntkXk],t=(t1,,tn)Rn\phi(t) := \mathbb E[e^{i \langle t, W \rangle}] = \mathbb E[e^{i\sum_{k=1}{n} t_kX_k}], \quad \forall t = (t_1, \dots, t_n) \in \mathbb R^n

In particular, if XX is discrete, we have

ϕ(t)=xX(Ω)eit,xP(X=x)=xX1(Ω)xXn(Ω)eik=1ntkxkP(X1=x1,,Xn=xn),\begin{equation} \begin{split} \phi(t) & = \sum_{x \in X(\Omega)} e^{i\langle t, x\rangle}\mathbb P(X = x) \\ & = \sum_{x \in X_1(\Omega)} \dots \sum_{x \in X_n(\Omega)}e^{i\sum_{k=1}^nt_kx_k}\mathbb P(X_1 = x_1, \dots, X_n = x_n), \end{split} \end{equation}

and if ff is the density of a random variable XX, we have

ϕ(t)=Rneit,xf(x)dx=Rneik=1ntkxkf(x1,,xn)dx1dxn.\begin{equation} \begin{split}\phi(t) & = \int_{\mathbb R^n} e^{i\langle t, x\rangle}f(x)dx \\ & = \int_{\mathbb R^n} e^{i\sum_{k=1}^nt_kx_k} f(x_1, \dots, x_n)dx_1\dots dx_n. \end{split} \end{equation}

Results

Proposition
  • ϕX\phi_X is well defined on R\mathbb R.
  • ϕX(0)=1\phi_X(0) = 1 and ϕX(t)1|\phi_X(t)| \leq 1 pour tout tRt \in \mathbb R.
  • If XX is a discrete random variable,
    ϕX(t)=xX(Ω)eitxP(X=x).\phi_X(t) = \sum_{x\in X(\Omega)} e^{itx}\mathbb P(X = x).
  • If XX is a random variable of density ff,
    ϕX(t)=Reitxf(x)dx,\phi_X(t) = \int_{R} e^{itx}f(x)dx,
    It's the fourier transform of ff.

Proposition
  • ϕ\phi characterises the distribution of XX.
  • ϕ\phi is uniformly continuous on R\mathbb R.
  • n1\forall n \geq 1, if E[Xn]<+\mathbb E [|X|^n] < + \infty, then ϕ\phi is derivable up to order n and for all 1kn1 \leq k \leq n,
    ϕ(t)(k)(t)=ikE[XkeitX],ϕ(k)(0)=ikE[Xk].\phi(t)^{(k)}(t) = i^k\mathbb E[X^ke^{itX}], \quad \phi^{(k)}(0) = i^k\mathbb E[X^k].
    In addition, in the vicinity of 0, we have
    ϕ(t)=k=0n(it)kk!E[Xk]+o(tn)\phi(t) = \sum_{k=0}^n \frac{(it)^k}{k!}\mathbb E[X^k] + o(|t|^n)