Skip to main content

Expectation

info

This section is waiting for contributions.

Definition

Definition

Let XX be a positive real random variable, then its expectation is defined by the quantity, may be infinite,

E[X]:=ΩX(ω)dP(ω)=RxdPX(x).\mathbb{E}[X] := \int_\Omega X(\omega)d\mathbb{P}(\omega) = \int_\mathbb{R}xd\mathbb{P}_X(x).

Results

The following proposition calculates the expectation of a random variable without knowing its density.

Proposition : Transfert function

Let XX be a random variable with density ff, and hh a real measurable function. Assume that

Rh(x)f(x)dx<+\int_\mathbb{R}|h(x)|f(x)dx < +\infty

Then, if we set Y = h(X), Y is an integrable random variable and

E[Y]=E[h(X)]=Rh(x)f(x)dx\mathbb{E}[Y] = \mathbb{E}[h(X)] = \int_\mathbb{R}h(x)f(x)dx